On Ricci curvature of metric structures on<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mi mathvariant="fraktur">g</mml:mi></mml:math>-manifolds

نویسندگان

چکیده

We study the properties of Ricci curvature ${\mathfrak{g}}$-manifolds with particular attention paid to higher dimensional abelian Lie algebra case. The relations between manifold and transverse characteristic foliation are investigated. In particular, sufficient conditions found under which ${\mathfrak{g}}$-manifold can be a soliton or gradient soliton. Finally, we obtain amazing (non-existence) generalization Boyer-Galicki theorem on Einstein K-manifolds for special class ${\mathfrak{g}}$-manifolds.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metric Ricci curvature for $PL$ manifolds

We introduce a metric notion of Ricci curvature for PL manifolds and study its convergence properties. We also prove a fitting version of the Bonnet-Myers Theorem, for surfaces as well as for a large class of higher dimensional manifolds.

متن کامل

Ricci curvature of metric spaces

We define a notion of Ricci curvature in metric spaces equipped with a measure or a random walk. For this we use a local contraction coefficient of the random walk acting on the space of probability measures equipped with a transportation distance. This notions allows to generalize several classical theorems associated with positive Ricci curvature, such as a spectral gap bound (Lichnerowicz th...

متن کامل

Positive Ricci Curvature on Highly Connected Manifolds

For k ≥ 2, let M4k−1 be a closed (2k−2)-connected manifold. If k ≡ 1 mod 4 assume further that M is (2k−1)-parallelisable. Then there is a homotopy sphere Σ4k−1 such that M]Σ admits a Ricci positive metric. This follows from a new description of these manifolds as the boundaries of explicit plumbings.

متن کامل

Non-negative Ricci Curvature on Closed Manifolds under Ricci Flow

In this short paper we show that non-negative Ricci curvature is not preserved under Ricci flow for closed manifolds of dimensions four and above, strengthening a previous result of Knopf for complete non-compact manifolds of bounded curvature. This brings down to four dimensions a similar result Böhm and Wilking have for dimensions twelve and above. Moreover, the manifolds constructed here are...

متن کامل

Highly connected manifolds with positive Ricci curvature

We prove the existence of Sasakian metrics with positive Ricci curvature on certain highly connected odd dimensional manifolds. In particular, we show that manifolds homeomorphic to the 2k-fold connected sum of S × S admit Sasakian metrics with positive Ricci curvature for all k. Furthermore, a formula for computing the diffeomorphism types is given and tables are presented for dimensions 7 and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2021

ISSN: ['1879-1662', '0393-0440']

DOI: https://doi.org/10.1016/j.geomphys.2021.104253